Global Food Security-Support Analysis Data at 30 m

Publications on Global Croplands, Cropland Water Use, and Food Security

2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 & earlier

Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Congalton, R.G., Oliphant, A., Poehnelt, J., Yadav, K., Rao, M., and Massey, R. 2017. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data, International Journal of Digital Earth, DOI: 10.1080/17538947.2016.1267269. IP-074181,

Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G., Yadav, K. and Thau, D., 2017. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 126, pp.225-244,

Jun Xiong, Prasad S. Thenkabail, James C. Tilton, Murali K. Gumma, Pardhasaradhi Teluguntla, Adam Oliphant, Russell G. Congalton, Kamini Yadav, Noel Gorelick. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine, Remote Sensing, 2017, 9(10), 1065; doi:10.3390/rs9101065,

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior U.S. Geological Survey
URL: /science/croplands/pubs2017.html
Page Contact Information: WRG Web Team
Page Last Modified: Tuesday, 30-Jan-2018 14:56:15 EST (mg)