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Abstract10

The automation of agricultural mapping using satellite-derived remotely sensed data remains a challenge in Africa because
of the heterogeneous and fragmental landscape, complex crop cycles, and limited access to local knowledge. Currently,
consistent, continent-wide routine cropland mapping of Africa does not exist, with most studies focused either on certain
portions of the continent or at most a one-time effort at mapping the continent at coarse resolution remote sensing. In this
research, we addressed these limitations by applying an automated cropland mapping algorithm (ACMA) that captures
extensive knowledge on the croplands of Africa available through: (a) ground-based training samples, (b) very high
(sub-meter to five-meter) resolution imagery (VHRI), and (c) local knowledge captured during field visits and/or sourced
from country reports and literature. The study used 16-day time-series of Moderate Resolution Imaging Spectroradiometer
(MODIS) normalized difference vegetation index (NDVI) composited data at 250-meter resolution for the entire African
continent. Based on these data, the study first produced accurate reference cropland layers or RCLs (cropland extent/areas,
irrigation versus rainfed, cropping intensities, crop dominance, and croplands versus cropland fallows) for the year 2014
that provided an overall accuracy of around 90% for crop extent in different agro-ecological zones (AEZs). The RCLs for
the year 2014 (RCL2014) were then used in the development of the ACMA algorithm to create ACMA-derived cropland
layers for 2014 (ACL2014). ACL2014 when compared pixel-by-pixel with the RCL2014 had an overall similarity greater
than 95%. Based on the ACL2014, the African continent had 296 Mha of net croplands areas (260 Mha cultivated plus
36 Mha fallows) and 330 Mha of gross cropland areas. Of the 260 Mha of croplands cultivated during 2014, 90.6% (236
Mha) was rainfed and just 9.4% (24 Mha) was irrigated. Africa has about 15% of the world’s population, but only about
6% of world’s irrigation. Net cropland area distribution was 95 Mha during season 1, 117 Mha during season 2, and 84
Mha continuous. About 58% of the rainfed and 39% of the irrigated were single crops (net cropland area without cropland
fallows) cropped during either season 1 (January-May) or season 2 (June-September). The ACMA algorithm was deployed
n Google Earth Engine (GEE) cloud computing platform and applied on MODIS time-series data from 2003 through
2014 to obtain ACMA-derived cropland layers for these years (ACL2003 to ACL2014). The results indicated that over
these twelve years, on average: (a) croplands increased by 1 Mha/yr, and (b) cropland fallows decreased by 1 Mha/year.
Cropland areas computed from ACL2014 for the 55 African countries were largely underestimated when compared with an
independent source of census-based cropland data, with a root-mean-square error (RMSE) of 3.5 Mha. ACMA demonstrated
the ability to hind-cast (past years), now-cast (present year), and forecast (future years) cropland products rapidly, but
currently, insufficient reference data exist to rigorously report trends from these results.
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FROMGC 30 m global cropland extent derived through multisource data15

GCEV1 global cropland extent version 116

GFSAD250 Global Food Security Support Analysis Data (GFSAD) Cropland Products of Africa at 250-m resolution17

GLC2000 global land cover for the nominal year 200018

GRIPC global rainfed, irrigated, and paddy croplands19

LULC2000 land use land cover for the nominal year 200020

MCD12Q1 MODIS Land Cover Type product21

MERIS MEdium Resolution Imaging Spectrometer22

MODIS Moderate Resolution Imaging Spectroradiometer23

SPOT Satellite Pour l’Observation de la Terre24

1. Introduction25

The extent, distribution, and characteristics (e.g., irrigation versus rainfed, cropping intensity) of croplands are factors that26
have long been identified as fundamental influences on agricultural development pathways, food security scenarios, and27
poverty reduction (Jayne et al., 2014). Estimates show that 52% of the world’s remaining arable land is in Africa, yet28
most of this land is concentrated in just eight countries (Algeria, Democratic Republic of the Congo, Ethiopia, Morocco,29
Nigeria, South Africa, Sudan, Uganda), while a number of the remaining countries contain large rural populations clustered30
in remarkably small areas (Chamberlin et al., 2014). Demography of Africa is projected to change exponentially, where the31
population is expected to increase from the current 1.2 billion to nearly 4 billion by the end of the century (Gerland et al.,32
2014). A quarter of the population is undernourished and many countries experience famines in sub-Saharan Africa (Clover,33
2010). In this context, timely and dependable information on agricultural croplands of Africa is a prerequisite necessity to (i)34
isolate the agricultural croplands to assess crop water use, crop productivity, and crop water productivity, and (ii) investigate35
how the croplands respond to different climatic conditions(Waldner et al., 2015).36

Global land use/land cover (LULC) products such as global land cover 2000 (Giri et al., 2005), GlobCover 2005/200937
(Arino et al., 2007), Global Land Cover-SHARE (Latham et al., 2014), and MODIS (Moderate Resolution Imaging38
Spectroradiometer) Land Cover (Friedl et al., 2002) do have cropland classes. However, to use these products as accurate39
and reliable cropland estimation for the practical purpose is questionable. For example, Cropland estimates derived from40
GlobCover are 20% higher than those derived from MODIS globally (Fritz, See, et al., 2011; Fritz, You, et al., 2011).41
Further, the spatial location of the croplands between any two of these global LULC products varies substantially. These42
factors have led to differences in cropland areas between various products which is as much as staggering 300 Mha globally43
(varying from 1.5 to 1.8 billion hectares). For example, the Food and Agricultural Organization (FAO) of the United44
Nations (UN) estimates that, around the year 2010, there was 319 Mha of croplands in Africa compared to the significantly45
lower MODIS land cover and GlobCover estimates of 277 Mha and 152 Mha, respectively. There are many reasons for46
such differences such as 1. these products are more focused on LULC systems than on agricultural systems, 2. definition47
issues, 3. resolution of the data used, 4. other data characteristics (e.g., spectral, radiometric), and 5. Methods adopted.48
Further, in these products croplands are not a single land cover class, but are contained within the mosaic of classes without49
specific agricultural information such as irrigation, cropping intensity, or crop type. All of these factors lead to substantial50
uncertainties in cropland assessment and related products of cropland water use and food security assessment and reporting.51

Further, there are several cropland studies. Time-series remotely sensed data are established as effective tool in cropland52
mapping (Esch et al., 2014) and have been successfully implemented at regional-scale (Bégué et al., 2014; Ding et al., 2014;53
Gumma et al., 2014; Helmholz et al., 2014; Pardhasaradhi Teluguntla et al., 2015) as well as at global scale (Chen et al.,54
2015; Pittman et al., 2010; Radoux et al., 2014; Salmon et al., 2015; Thenkabail and Wu, 2012; Wang et al., 2015). Various55
aspects of croplands are mapped such as irrigated areas (Conrad et al., 2016; Peña-Arancibia et al., 2016; Salmon et al.,56
2015; Thenkabail and Wu, 2012), rainfed areas (Biradar et al., 2009; Salmon et al., 2015), cropping intensities (Qiu et al.,57
2014), and crop types (Gumma et al., 2014; Zhang et al., 2015; Zhong et al., 2014; Zhou et al., 2016), and cropland fallows58
(Müller et al., 2015). There are many methods and techniques adopted for cropland classification that include phenology59
based algorithms (Dong et al., 2015; Jeganathan et al., 2014; Pan et al., 2015), classification regression trees (Deng and60

2



Wu, 2013; Egorov et al., 2015; Ozdogan and Gutman, 2008), decision tree algorithms (Friedl and Brodley, 1997; Shao and61
Lunetta, 2012), Fourier harmonic analysis (Zhang et al., 2015), spectral matching techniques (Dheeravath et al., 2010),62
support vector machines (Mountrakis et al., 2011), random forest algorithm (Tatsumi et al., 2015) and a number of other63
machine learning algorithms (DeFries, 2000; Duro et al., 2012; Lary et al., 2016; Pantazi et al., 2016). Many studies adopted64
supervised and unsupervised classification approaches. Supervised methods (Egorov et al., 2015) rely extensively on in-situ65
data or on human interpretation of spectral signatures, making the classification process resource-intensive, time-consuming,66
and difficult to repeat over space and time (Zhong et al., 2014). So, when rich sets of in-situ data are lacking, as is often the67
case in Africa, supervised approaches lead to uncertainties. Unsupervised approaches require far less in-situ data or human68
interpretation but they require large volumes of in-situ data for class identification and validation data.69

Specific to continental Africa, amongst existing cropland products there has been large disagreement (Fritz and See, 2008;70
Giri et al., 2005; Hansen and Reed, 2010; Herold et al., 2008; McCallum et al., 2006) especially in the extent of the cultivated71
areas and their spatial distribution (Fritz, See, et al., 2011; Salmon et al., 2015; P Teluguntla et al., 2015; Thenkabail and72
Wu, 2012; Waldner et al., 2015) as a result of fragmented and heterogeneous rural landscapes (Lobell and Asner, 2004) and73
low agricultural intensification (Pittman et al., 2010) throughout continental Africa. The challenges of mapping cropland in74
Africa also include: (a) spatial structure of the agricultural landscape (Vancutsem et al., 2012), (b) spectral similarity with75
grassland, mainly in arid and semi-arid areas (Herold et al., 2006, McCallum et al. (2006)), (c) high regional variability in76
terms of agricultural systems and calendars between the hyper-arid Sahara and other agro-ecological zones (Vintrou et al.,77
2012).78

Further, the current state-of-art using the above methods and approaches is mostly limited to producing cropland products79
for a given period, or for a growing season, or for a particular year. However, such a process over very large areas such80
as continent will always have limitations in availability of extensive collection of reference data. The biggest difficulty in81
cropland mapping is in the lack of algorithms that accurately reproduce cropland products year after year or season after82
season. So, more recently, there are efforts at producing cropland products by developing automated algorithms (Jamali et al.,83
2014; Waldner et al., 2015; Yan and Roy, 2014). Thenkabail et al developed rule-based ensemble decision-tree Automated84
algorithms to produce cropland versus non-croplands across years for Australia, Tajikistan and California (Teluguntla et85
al., 2016; Thenkabail and Wu, 2012; Wu et al., 2014). Waldner et al. (2015) used a baseline map generated from five86
knowledge-based temporal features to train an automated support vector machines (SVM) classifier on selected areas in87
Argentina, Belgium, Ukraine, and China. However, these automated algorithms are currently applied only to small pilot88
studies and not over large areal extent such as the African Continent.89

Given the above discussions, the overarching goal of this research was to develop and test automated cropland mapping90
algorithms (ACMAs) over a very large area such as a continent with an ability to automatically and accurately reproduce91
cropland products year after year and season after season using MODIS 250-m 16-day time-series data. Africa was92
chosen given its importance for food security in the twenty-first century and to address the challenge of mapping complex93
agricultural systems. The spatial, temporal, and spectral specifications of MODIS are considered as highly suitable for94
land use and land cover (LULC) classifications, especially for cropland extent and area mapping (Hentze et al., 2016). The95
Google Earth Engine (GEE) cloud computing platform was used in this project to generate the products as well as collecting96
reference data. The GEE is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial97
datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands98
of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and99
algorithm development, and support for in-the-field activities such as validation, ground-sampling, and crowd-sourcing.100
We first, develop ensemble decision-tree algorithm ACMA for the year 2014 for the African continent, and then tested101
and validated ACMA for the same year. This was followed by validation of ACMA algorithm for 11 independent years102
(2003-2013). Finally, we deploy the ACMA algorithm on Google Earth Engine (GEE) cloud computing platform, so103
scientists and practitioners can routinely reproduce cropland products of Africa year after year.104

2. Data105

2.1. Study Area106

The study area included the entire African continent which extends from approximately 38°N to 35°S latitude, occupies107
30.3 million km2, and has several distinct geologic and biogeographic regions with varying land cover types. For example,108
Sahara, the largest hot desert in the world, comprises much of the land found within North Africa, excluding the fertile109
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coastal region situated against the Mediterranean Sea, the Atlas Mountains of the Maghreb, and the Nile Valley of Egypt and110
Sudan. Savannas, or grasslands, cover almost half of Africa, more than 13 million km2. These grasslands make up most111
of central Africa, beginning south of the Sahara and the Sahel and ending north of the continents southern tip. Also, 80112
percent of Africa’s rain forest is concentrated in central Africa, along the Congo River basin. Swahili Coast, stretches about113
1,610 kilometers along the Indian Ocean, from Somalia to Mozambique, where vegetated areas are located on a narrow114
strip just inland from the coastal sands and heavy cultivation has diminished the diversity of plant species in this interior115
area. Southern Africa will be one of the regions in the world whose crop production is most affected by climate change116
such as higher temperatures and reduced water supplies, along with other factors like biodiversity loss and ecosystems117
degradation (Lobell et al., 2008). All the raster and vector data in entire Africa continent were produced in Geographic118
projection (WGS84) at a spatial resolution of 0.0022458 degrees (equivalent to 250 m at the equator).119

The FAO Global Agro-Ecological Zones were used as zoning basis(FAO et al., 2012). The entire Africa was divided into120
eight major agro-ecological zones (Figure 1) based on climate, soils, and terrain data that in turn indicates the length of crop121
growing period.122

Figure 1: The United Nations (UN) Food and Agriculture Organization (FAO) Global Agro-Ecological Zones (AEZs) and distribution of reference samples
repository in Africa continent. [Note: initial 15 AEZs were consolidated to final 8 to eliminate AEZs with zero or insignificant agriculture such as in the
Sahara Desert].

2.2. Existing cropland/LULC reference maps123

Available land use/land cover (LULC) reference maps of Africa (Table 1) from different sources vary widely in how they are124
defined, derived, and mapped using a wide range of data, and methods and have different projections, formats, resolutions,125
and LULC categories. Even though they are used widely in LULC research, inconsistencies and uncertainties make their use126
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Table 1: Datasets used in creating 250m cropland mask of Africa in terms of their reference, data source, resolution, and time interval

Name Institution Sensors Resolution Time Classes Reference
Globcover ESA MERIS 300m 2005, 2009 LULC (Arino, 2010)
Africover FAO Landsat 7 30m 1995-2002 LULC (Kalensky, 2014)
LULC 2000 USGS AVHRR 2000m 2000 LULC (Soulard, 2014)
GLC 2000 JRC SPOT 1/112° 2000 LULC (Fritz et al., 2000)
MCD12Q1 NASA MODIS 500m 2004 - now LULC (Leroux et al., 2014)

MODIS-JRC JRC/MARS MODIS, Landsat 250m 2009 LULC (Vancutsem et al., 2013)
GCEV1 USGS MODIS, Landsat 1000m 2010 Cropland (Teluguntla et al., 2015)

Global30 NGCC Landsat 7 30m 2010 LULC (Chen et al., 2015)
FROMGC CESS Landsat 7 30m Circa 2010 LULC (Gong et al., 2013)

GRIPC BU MODIS 500m Circa 2005 Cropland (Salmon et al., 2015)

as reliable baseline maps questionable(P Teluguntla et al., 2015). Thereby, we expanded our investigation of the cropland127
extent by incorporating these studies into a comprehensive baseline crop layer (Figure 3) in Section 3.2.128

2.3. Reference samples repository129

In-situ samples collected from ground data is always the first step to establishing knowledge for the classifier in classification.130
These in-situ data are supposed to provide the most accurate information by definition. However, they are often not an131
ideal gold standard but degraded by error (Foody, 2010) because of small samples size, sampling bias and inconsistent132
labeling. A web-based system for supporting classification have been used in the past for general land cover (Fritz et al.,133
2009; Tsendbazar et al., 2015). In this paper, web-based data was developed (in addition to extensive ground data) using134
multiple sources and consolidated on the GEE platform.135

The reference samples repository consists of following components: The project developed a ground data-collection mobile136
app https://croplands.org/mobile that can be downloaded and run on a smart phone device. This mobile app allows users137
to collect geo-references ground data that includes digital photos, cropland data required for the project (cropland versus138
cropland fallows, irrigated versus rainfed, cropping intensity). All data so collected from anywhere by anyone in the139
world is automatically uploaded to the project server. All data so collected from anywhere in the world is automatically140
uploaded to the project server. All data samples, so collected are further reviewed in the online image-interpretation tool141
(https://croplands.org/app/data/classify) to ensure that the samples are centered on the farm field using sub-meter to 5-meter142
very high-resolution imagery (VHRI) data from sensors such as Worldview 2, QuickBird, and IKONOS. Reference ground143
data for Africa were collected through several field campaigns by the project team in May, June, and August 2014 to144
coincide with the peak cropping seasons in different parts of Africa. Field information was collected from 250 m × 250145
m homogeneous plots. A total of 1381 samples were collected from Ethiopia, Ghana, Kenya, Malawi, Mali and Uganda.146
Reference data was also collected from several other sources. First, some other global/region projects (Tateishi et al.,147
2014; Zhao et al., 2014) shared with us valuable reference datasets. To incorporate them into our project, we converted148
their labeling system to be consistent with the labeling scheme of our project. Second, ~500 reference cropland samples149
were selected from a series of published literature for selected areas of Africa based on detailed studies using VHRI or150
high-resolution imagery such as Landsat (Haack et al., 2014; Kidane et al., 2012; Rembold et al., 2000; Shalaby and Tateishi,151
2007; Were et al., 2013; Zucca et al., 2015).152

Overall, there were total 3,265 reference samples (Figure 1) spread across the eight consolidated agro-ecological zones153
(AEZs) of the African continent. Of these 953 reference samples were collected during the field visit by the team and the rest154
2312 reference samples were sourced from partners/collaborators (Figure 1). When the full reference samples repository was155
established through above approaches, every sample was then marked into “training” and “validation” groups. A random156
70%-30% splitting of the 3265 were used to separate 2285 samples for “training” and the rest 953 for “validation”. The 3265157
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training samples were used to create knowledge through ideal spectral libraries. Ground data samples repository collected158
during the field visit includes mostly pure classes. However, there are still a significant number of mixed classes because of159
heterogeneous landscape. In order to overcome this heterogeneity, we combine the homogeneous and heterogeneous samples160
and further use MODIS NDVI signatures to determine distinct and separable groups of classes like the ones illustrated in the161
Figure 4. These distinct class signatures were then used in the algorithm.162

These validation datasets are publicly available for download at the following address: https://croplands.org/app/data/search.163
Also, the independent accuracy assessment team further added additional validation samples that are hidden to mapping.164

2.4. MODIS NDVI times series data165

The MODIS 250m 16-day composite NDVI product was found to have high temporal resolutions to overcome the data166
gap because of cloud cover and harmattan haze during the monsoon season over Africa (Leroux et al., 2014; Vintrou et167
al., 2012). Hosted on Google Earth Engine (GEE), the MYD13 product is computed from daily atmospherically corrected168
bi-directional surface reflectance that has been masked for water, clouds, heavy aerosols, and cloud shadows. Google Earth169
Engine, based on millions of servers around the world and the state-of-the-art cloud-computing and storage capability, has170
archived a large catalog of earth observation data and enabled the scientific community to work on the trillions of images in171
parallel processing way (Hansen et al., 2013).172

In this paper, NDVI time-series spanning the entire year (January–December 2014) was used as a reference year because most173
of the ground samples and very high spatial resolution imagery (VHRI) collected in the same year and 2014 is a precipitation174
normal year. The precipitation data used here is from CHIRP (Funk et al., 2014), which is a 30+ year quasi-global rainfall175
dataset. Spanning 50°S-50°N (and all longitudes), starting in 1981 to near-present, CHIRPS incorporates 0.05° resolution176
satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis and seasonal drought177
monitoring.178

3. Methodology179

3.1. Method overview180

The proposed methodology is presented in Figure 2. First, MODIS 16-day 250 NDVI imagery composite of the African181
continent was stratified by (1) Masking out the non-cropland area using 250m baseline cropland mask of Africa (Figure 3),182
(2) Sub-setting masked area into eight consolidated FAO agro-ecological zones (AEZs) (Figure 1), and (3) clustering each183
cropland mask of the 8 AEZs into 25 unique clusters using K-means algorithm for a total of 200 classes. Second, ground184
samples from reference samples’ repository (section 2.3) were split into training part and validation part. The former was185
used to characterize unique ideal time-series signatures. Third, clustered classes from each of the 8 AEZs generated using186
k-means algorithm were grouped together through quantitative spectral matching techniques (QSMTs) and the group of187
similar cluster classes was matched with the ideal spectra to identify and label classes. The class labeling is further verified188
through ground data, VHRI, field visits, and through external sources. The process lead to an accurate reference cropland189
layer (RCL) of Africa for the year 2014 (RCL2014). The cropland knowledge available in the RCL2014 was then coded190
in an ensemble decision-tree automated cropland mapping algorithm (ACMA) to accurately replicate cropland products191
through Automated cropland layer for the year 2014 (ACL2014). Once this is achieved accurately, ACMA was deployed on192
the Google Earth Engine to create automated cropland layers for independent years from 2003 to 2013.193
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Figure 2: Schematic diagram of the methodology and area statistics used in creating reference cropland layer for the year 2014 (RCL2014) and the
Automated cropland mapping algorithm (ACMA) for continental Africa.

3.2. 250-m Baseline crop mask194

Ten previous LULC products of Africa (Table 1) can be put into two types: LULC map following certain Land Cover195
Classification Systems, where cropland was labeled as i)one class (Globcover, LULC 2000, Global30) or ii) multiple classes196
(MCD12Q1, FROMGC, GRIPC), or iii) a cropland layer with different intensity levels as percentage (GCEV1, CUI). For i),197
cropland class was recoded to 1 while another non-cropland was masked out; For ii), cropland classes was recoded to 1, if198
cropland exists in any other mixture classes, count them in. For iii), a visual analysis of the products in comparison with on199
Google Earth imagery then the threshold value was set to make sure most of the pixel contained cropland was labeled.200

Then, the following processes were applied to integration the different datasets:201

1. Rasterizing: vector datasets (Africover, CUI and SADC) are converted into a 250-m resolution raster file with “mode”,202
which means the feature with the largest area in the cell yields the attribute assigned to the 250m pixel cell.203

2. Reproject & Resampling: Datasets were reprojected to the Geographic projection (WGS84) at a 250-m spatial204
resolution.205

3. Aggregation: All the resampled layers have been aggregated to a single crop mask. “Aggregate” means the pixel was206
set to “cropland” if any layer tell it is a “crop” pixel and ignore other “non-crop” status.207

Based on the spatial analysis of the 10 products, we derived a consolidated, resampled cropland mask at 250-m resolutions208
for entire Africa. Since it captured consolidated studies performed by various researchers (Table 1, Figure 3), covering209
nominal years 2000 through 2014, it not only captures all the croplands of Africa for nominal year 2014, but also significant210
portions of non-croplands because a number of datasets in Table 1 are for land use/land cover (LULC) where cropland is a211
class but has significant non-cropland mix. Working within such a mask (Figure 3) will help us study all cropland dynamics212
and their characteristics year after year or season after season for the past MODIS era years (e.g, 2000-2013) as well as for213
the current study year (2014). However, it raises a question on what if the croplands expand beyond this mask in future214
years likely to happen. In future studies (2015 and beyond), we need to do a quick study of the areas outside the mask to215
ascertain any expansion and capture this expansion.216
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Figure 3: Baseline cropland mask of Africa based on 10 pathfinding studies. Aggregated 250m cropland mask derived from 10 previous studies in Africa,
including cropland fallow areas (Table 1).

3.3. Classification System and signatures217

We mapped four different cropland layers in our product: 1) Cropland extent/area; 2) Irrigated versus rainfed; 3) Cropping218
intensities: single, double, triple, and continuous cropping; 4) Croplands versus Cropland Fallows; and crop types (Table 2).219
There are many differences and inconsistencies in definitions of various global products which is one of the major causes220
of error distribution (Congalton et al., 2014). The FAO cropland database, for example, defines arable land as land that is221
under temporary crops (double-cropped areas are counted only once), temporary meadows for mowing or pasture, land222
under market and kitchen gardens, and land temporarily fallow (less than five years) (Kummu et al., 2012). In the definition,223
cropland includes all cultivated land under permanent crops, including harvested cropland, crop failure, temporarily fallow224
or idle land, and cropland used temporarily for pasture; irrigated crop includes all croplands where water from the artificial225
application is delivered to crops one or more times during crop growing season. Harvest must occur at least once per year226
(except for plantation crops like tea, coffee, rubber, many varieties of nuts and fruits); rainfed crop includes all croplands227
where no water from any storage or delivery mechanism is utilized, but crops are not flooded. Cropland fallows are mapped228
separately.229

It is widely accepted that cropland classification accuracies increase when the large areas like continents are stratified and230
studied separately. After masking out the non-cropland area using 250m crop mask, the input dataset was subsetted based231
on the 8 FAO agro-ecological zones (AEZs, Figure 1). The area in the same AEZ zone has similar characteristics related to232
land suitability, potential production, and environmental impact. An Agroecological Zone is a land resource mapping unit,233
defined regarding climate, landform and soils, and land cover, and having a specific range of potentials and constraints for234
land use. The essential elements in defining an AEZs are the growing period, temperature regime and soil mapping unit.235
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Table 2: Description of crops mapped in global cropland product for Africa @ 250-m (GFSAD250).

# Label Dominant Crop Types included Number of Samples
1 Irrigated, SC, season 2 wheat, barley 28
2 Irrigated, SC, season 1 maize, rice, millet 14
3 Irrigated, DC, rice/chili-vegetable, rice-rice 58
4 Irrigated, Continuous sugarcane, plantation 20
5 Rainfed, SC, season 2 millet, barley, maize, beans, cassava, yam 570
6 Rainfed, SC, season 1 maize, sorghum, tef, wheat, barley, cassava, yam 257
7 Rainfed, DC, rice-rice, maize-maize, rice-beans/potato/chickpea/pulses 58
8 Rainfed, Continuous sugarcane, plantation 57
9 Fallow-lands 10
Note: season 1: Oct - Mar, season 2: May - Sep.
Only dominant crops are mentioned, since always more than one crop in a single MODIS 250m pixel (~6.25 ha).

For each agro-ecological zones (AEZs), ideal time-series signatures of unique and distinct classes were established for the236
irrigated areas and rainfed areas. Our focus was to develop such ideal time-series signatures for classes that are separable237
from one another. For example, 4 such classes for irrigated and 4 for rainfed were defined in the AEZ 3 (Figure 4). Indeed,238
these four classes stood out across AEZs. Classes other than these were either not very distinct/unique, or did not have239
significant areas and hence were merged into one of the 8 classes. The fallow cropland class was the ninth class, that was240
common in all AEZs. Establishing the 9 distinct classes (8 classes in Figure 4 and the ninth class of fallow croplands) allows241
automated ACMA algorithm coding which in turn will facilitate replicating cropland characteristics year after year or season242
after season.243

The season division is based on cropland calendar and precipitation pattern from ground experience as well as literature244
(Hentze et al., 2016, Kidane et al. (2012), Kruger (2006), Lambert et al. (2016), Motha et al. (1980), Waldner et al. (2016)),245
specific in Africa. Some countries, like Zambia, their seasons fall into three periods: Rainy season (December–April), Cool246
dry season (May–August), Hot dry season (Sept–November). Such case usually affected by a highly unpredictable weather247
patterns. However, seasonality can be easily discerned using the time-series NDVI (e.g., Figure 4).248
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Figure 4: Ideal spectral signatures of the distinctly separable, unique four irrigated (top) and four rainfed (bottom) classes in agro-ecological zone 3 (AEZ
3), Africa. Illustration on the every 16-day time-series of MODIS 250 m NDVI profiles based on ground data sample knowledge base collected throughout
Africa for the year 2014

3.4. Creation of Reference Cropland Layer (RCL)249

To drive clustering to the massive dataset on terabyte level, all the MODIS tiles covering Africa in 2014 were organized as a250
large ImageCollection in Google Earth Engine and then exported in parallel netCDF format (PnetCDF, Li et al. (2003)) on251
NASA Earth Exchange (NEX, Nemani et al. (2011)) supercomputing platform. Message Passing Interface (MPI) k-means252
(Zhang et al., 2011) algorithm was applied to do the clustering with 2,000 CPUs on NASA AMES super computer. For253
the total 8 AEZs, K-means cluster results in a total 200 unique clusters for the continental Africa, based on their NDVI254
time-series profile signal.255

A reference cropland layer (RCL) was produced based on zonal classes signature knowledge for the year 2014 (RCL2014),256
certain class is matched with ideal time series signature library using quantitative spectral matching techniques (QSMTs,257
Thenkabail et al. (2007)), and is given a preliminary label such as, for example: “rainfed, single, season 1” (Figure 5). The258
process is iterated leading to identification and labeling of all 200 classes from the 8 AEZs. The accuracies of the RCL2014259
products were based on validation dataset described at section 2.3.260
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Figure 5: Quantitative Spectral matching (QSM) of a generic class with an ideal spectral signatures.

3.5. Generalization of RCL to ACMA Rules261

The proposed method uses RCL2014 for developing recursive decision-tree automated cropland mapping algorithm (ACMA)262
since it consists of the best possible cropland information available for each AEZ of Africa. The construction of decision-tree263
ACMA algorithm is a procedure that recursively partitions a dataset into smaller subdivisions by a set of tests defined at each264
branch or node in the tree. The tree is composed of a root node (formed from training data), a set of internal nodes (splits),265
and a set of terminal nodes (leaves). A zonal tree rules are constructed by recursively partitioning the time series distribution266
of the reference cropland layer using WEKA (Sharma et al., 2013) and then expert-timed till the derived ACMA generated267
cropland layer for the year 2014 (ACL2014) accurately matches with RCL2014. In zones where land cover features were268
misclassified and classification output was considered unsatisfactory, we added training data, redeveloped the decision tree269
models, and reapplied models.270

We used decision tree approach to hierarchically classify crop types. The decision tree for each AEZ consisted of three271
steps: a) separately using irrigated/rainfed masks, b) fallow cropland identification, c) decision-tree for the primary classes272
in the individual AEZs. Fallow croplands were filtered out separately for irrigation and rainfed: for irrigation area, area273
whose NDVI value lower than 0.2 in six months of one calendar year being mapped as cropland fallows; for rainfed area,274
pixels whose NDVI falls below a threshold during the peak growing seasons of the crop will be coded as cropland fallows.275

An example to distinguish MODIS NDVI time series distribution of these classes in Africa are shown in Figure 4 for AEZ3.276
Similar eight classes were established across all AEZs. Apart from the eight distinct classes (Figure 4) across AEZs, a277
cropland fallow class is also coded based on NDVI falling below a threshold during the critical growing period. The nine278
classes (Table 2) from the irrigated and rainfed masks of the 8 AEZs are analyzed (e.g., Figure 5) leading to RCL2014. The279
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knowledge captured in the 9 RCL2014 classes are then coded in ACMA (Figure 6) to derive ACMA developed cropland280
layer for the year 2014 (ACL2014). The process of developing the ACMA go through numerous iterations, as illustrated281
partially in Figure 6. It involves writing a bunch of simple rules to capture RCL2014 knowledge in the codes and replicate it282
accurately. Every ACMA rule captures certain percentage of total cropland area and its characteristics (e.g., irrigated versus283
rainfed or intensity) in each of the nine classes (Table 2) of RCL2014. The process is repeated with numerous additional rules284
to capture as much cropland area/extent and as many cropland characteristics as possible. If the rule captures non-croplands285
then the iteration is repeated by tweaking the rule till we can precisely (or near precisely) capture croplands, distinguish them286
from non-croplands, as well as differentiate irrigated croplands from rainfed croplands or cropping intensities. The process287
requires several runs to slightly adjust and re-adjust the thresholds till ACL2014 achieves as close a match as possible with288
RCL2014. The ACMA rules are shown in Figure 6.289

Figure 6: Example of ACMA algorithm established for AEZ 3. An illustration of the automated cropland mapping algorithm (ACMA) coded and
development for the irrigated and rainfed are written so as to capture the knowledge in RCL2014. The process leads to ACMA generated cropland layer for
the year 2014 (RCL2014) replicating ACMA generated cropland layer for the year 2014 (ACL2014). ACMA is then applied for other independent years
and validated.

3.6. Ensemble and Deployment algorithm on Google Earth Engine for year-to-year-classification290

ACMA is a group of decision-trees like what we show in Figure 6 so we can easily deploy it on Google Earth Engine and291
run fast for the independent years. Taking MODIS 250-m time-series data as input, we tested ACMA algorithm from 2003 and292
2013. This entire ACMA algorithm is made available here: http://geography.wr.usgs.gov/science/croplands/algorithms/africa_250m.html293

The strength of the ACMA algorithm lays in its ability to reproduce cropland products accurately and automatically for the294
independent years: the past, present, and future. As a result, we used MODIS 250-m time-series data from the year 2003295
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through 2013 and tested the ACMA algorithm.296

3.7. Areal Statistics297

Full pixel areas (FPAs) are not actual areas. The actual areas are equivalent to sub-pixel areas (SPAs) and are calculated by298
multiplying SPAs with cropland area fractions (CAFs). This is because a MODIS pixel even when cropped may have a299
different proportion of crop within the pixel. Thereby:300

SPAs = FPAs⇥CAF

Where CAFs are determined by taking an average MODIS NDVI image during the growing season and plotting all pixels301
of the class for this period from the MODIS NDVI image in a brightness-greenness-wetness space (Thenkabailc et al.,302
2007). The same methodology is adopted here. Also, to get actual areas, one need to re-project MODIS cropland products303
to appropriate projection. Further, areas are established during different seasons by accounting intensity (single, double,304
triple, or continuous cropping). Areas cropped twice have areas counted two times a year. Single and continuous have areas305
computed one time a year.306

4. Results307

The results start with a reference cropland layer for the year 2014 (RCL2014), followed by the ACMA generated cropland308
layer for the year 2014 (ACL2014). This will be followed by cropland layers for the 11 independent years 2003-2013309
(ACL2003 to ACL2014). Throughout the product validation, area calculations, and comparison with statistical data are310
presented and discussed.311
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Figure 7: RCL2014 Spatial distribution. Reference cropland layers of Africa for the year 2014 (RCL2014). Three RCL2014 products:(a) Cropland versus
non-Cropland Layer, (b) Irrigated versus Rainfed Layer, and (c) Crop intensities Layer.

4.1. Reference cropland layer of Africa for the year 2014 (RCL2014)312

4.1.1. Croplands versus non-croplands313

The accuracies of croplands versus non-croplands were evaluated for each of the 8 agro-ecological zones (AEZs) and the314
overall accuracies (OAs) varied between 89 to 100% (Table 3). The accuracy of the resulting cropland products was validated315
with the global food security support analysis data (GFSAD) project Validation Dataset https://croplands.org/app/data/search,316
which is a consistent global cropland validation dataset designed for validating cropland products and includes multiple317
datasets that are ground-based, VHRI based, or sourced from other local detailed studies. In this research a total of 3265318
samples, distributed over various agro-ecological zones (AEZs) of Africa, were collected through the crowdsourcing land319
cover validation tool called cropland.org. Also, the proposed product is compared with cropland statistics derived from other320
gridded and survey-based data sources. The AEZs 4, 5, 6, 7, and 3, together where about 95% of Africa’s croplands exist,321
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have an accuracy of 89-96%. The very high (98-100%) percent accuracies were for AEZs with very low (0.35 to 4.64%)322
cropland areas.323

Figure 8: RCL2014 seasonal cropland layers. Reference cropland product of the year 2014 (RCL2014) for Africa at 250m generated using MODIS every
16-day time-series data, extensive field knowledge, image classification, and quantitative spectral matching techniques (QSMTs) methods. The top layer
shows the croplands from season 1 and season 2 combined, whereas season 1 croplands are shown in bottom left and season 2 croplands are shown in
bottom right.

The overall agreement of croplands versus non-croplands mapped by the 250-m global cropland product of Africa (this study)324
or GFSAD250 when compared with the gridded dataset from other sources (Table 4), showed that there is an uncertainty325
between 15-25%. Given that all these products are produces using different data, time periods, methods, and approaches, the326
uncertainties are reasonable.327

Besides, a country by country cropland areas was then computed and compared with MIRCA2000 ((Portmann et al., 2010),328
Figure 8; The most updated statistics were obtained through personal communication with Portmann and Siebert in 2014 to329
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Table 3: RCL2014 overall accuracies for croplands versus non-croplands (product 1). Overall accuracies of RCL2014 product 1 (croplands versus
non-croplands) based on ground data for Africa in Each AEZs. Overall accuracies (OAs) of the reference cropland layer for the year 2014 (RCL2014) for
Africa in each of the 8 agro-ecological zones (AEZs) for croplands versus non-croplands (product 1) produced based on MODIS 250 m every 16 day NDVI

data, ground data, and spectral matching techniques.

AEZ
Cropland 

Area
% of total 
Cropland

Non-Cropland 
Area

% of total non-
Crop Area

Crop 
Samples

Non-Crop 
Samples

Overall 
Accuracy

Mha % Mha % - - %
1 1.0 0.3 134.3 4.8 1 49 100
2 13.8 4.6 1,090.0 39.3 2 48 100
3 24.6 8.3 318.2 11.5 36 209 89
4 106.9 35.9 336.6 12.1 29 204 87
5 94.4 31.7 421.8 15.2 20 208 91
6 28.5 9.6 259.2 9.3 13 279 95
7 26.6 9.0 164.6 5.9 6 235 96
8 1.7 0.6 52.2 1.9 7 243 98

Total 297 2777 114 1378 94

Table 4: The percent agreement between the global cropland product of Africa @ 250-m (this study) or GFSAD250 when compared with other studies.
GlobCover and MODIS MCD12 both have an additional class of mosaic cropland/native vegetation that is added.

GCP250 vs.Dataset GRIPC GLC30 GLC-SHARE GlobCover 
(+)

GlobCover 
(−)

MCD12 
(+)

MCD12 
(−)

Crop/Non-Crop Agreement % 87.63 86.88 82.95 73.75 72.79 75.88 72.45
Kappa 0.33 0.39 0.48 0.47 0.34 0.46 0.32
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coincide with our 2014 synthesis). The variability was maximum smaller island nations (e.g., Comoros, Mauritius). Few330
other countries (e.g., Sierra Leone, Cote dVoire, Chad, Guinea, and Cameroun) also showed significant variability. R-square331
of 0.42 is calculated based on all 55 African Nations (recognized by the United Nations and African Union) (Figure 9). If332
we 8 outlier countries, where uncertainty is maximum, the comparisons between: GFSAD250 with MIRCA2000 for the333
rest 47 countries increases to an R-square of 0.69. The GFSAD250 These results clearly imply the ability of GCEA250 to334
compute cropland areas of Africa and provide country level statistics.335

y = 1.09 + 0.728 x   n = 55   R2 = 0.42   RMSE = 3.4
y = 0.62 + 0.866 x   n = 47   R2 = 0.69   RMSE = 1.35
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Figure 9: The global cropland product of Africa @ 250-m (this study) or GFSAD250 derived country by country cropland areas (rainfed+irrigated) of
Africa compared with MIRCA2000 (Portmann, 2010).

The remote sensing estimates of this work over-estimates areas relative to MIRCA2000 Comoros and Zimbabwe whereas336
we underestimate in Cameroon, Côte d’Ivoire and DR Congo. There are reasons for the discrepancy between our remotely337
sensed products and survey-based statistics like MIRCA2000:338

1. Uncertainty in the calculation of MIRCA2000 areas. MIRCA2000 is a derived gridded dataset based on FAOSTAT339
database (Portmann et al., 2010). FAO compiles the statistics reported by individual countries, which are based340
on national censuses, agricultural samples, and questionnaire-based surveys with major agricultural producers,341
independent evaluations (FAO, 2006 and The World Bank, 2010). Since each country has its own mechanism,342
differences in data gathering, and resource limitation, the data lacks objectivity in many countries resulting in data343
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Table 5: RCL2014 overall accuracies for irrigated versus rainfed (product 2). Overall accuracies of irrigated versus rainfed RCL2014 product 2 (rainfed
croplands versus irrigated croplands) based on ground data for Africa in Each AEZs. Overall accuracies (OAs) of the reference cropland layer for the year
2014 (RCL2014) for Africa in each of the 8 agro-ecological zones (AEZs) for irrigated versus rainfed croplands (product 2) produced based on MODIS

250 m every 16 day NDVI data, ground data, and spectral matching techniques.

 AEZ
Irrigated 

Area
% of total 

Irrigated Area
Rainfed 

Area
% of total 

Rainfed Area
Irrigated 
samples

Rainfed 
samples

Total 
samples

Overall 
Accuracy

Mha % Mha % - - - %
1 0.8 3.62 1.0 0.35 289 11 300 94
2 4.6 20.16 12.7 4.64 117 164 281 89
3 2.4 10.45 22.7 8.26 18 273 291 91
4 6.8 29.39 98.6 35.92 25 267 292 93
5 6.2 26.75 87.1 31.72 20 272 292 86
6 1.7 7.35 26.3 9.57 11 274 285 91
7 0.5 2.25 24.6 8.95 6 280 286 93
8 0.0 0.03 1.6 0.59 2 283 285 92

Total 23 274 488 1824 2312 91

quality issues, particularly in Africa. For example, in 2008/09 in Malawi, cropland extent was estimated by combining344
household surveys with field measurements derived from a “pacing method” in which the size of crop fields is345
determined by the number of steps required to walk around them (Dorward and Chirwa, 2010).346

2. Application of the ACMA over certain regions have to face the limitation of spatial resolution of MODIS pixels.347
A typical case is Madagascar, in its slash-and-burn agriculture for pluvial rice which is a predominant component348
in of cultivation. These fields are easily mixed with neighboring vegetation because lack of cropland management349
(Messerli and Messerli, 2009), resulting in fallow re-growth in rice fields.350

4.1.2. Irrigated versus rainfed croplands351

Of the 260 Mha croplands during 2014, 90.6% (236 Mha) was rainfed and just 9.4% (24.5 Mha) was irrigated (Figure352
7b). Africa has 15% of the world population, but just 6% of global irrigated area of 400 Mha (Thenkabail et al., 2009,353
2012) is in Africa. An overwhelming proportion of the irrigated areas were along the Nile, specifically in Egypt, North354
Africa, South Africa, along Niger in Mali, and scattered irrigated areas in Southern Africa especially Lake Victoria and Lake355
Malawi (Figure 7b). Irrigated versus rainfed classification accuracies were evaluated in each of the 8 AEZs and the overall356
accuracies were between 89 to 94% (Table 5). The accuracy of the irrigated versus rainfed cropland products was validated357
with the global food security support analysis data (GFSAD) project Validation Dataset as discussed before. A country by358
country comparison of the irrigated areas and the rainfed areas computed by this study with MIRCA2000 reported statistics359
are plotted in Figure 10. The R-square values were 0.6 for irrigated areas and 0.31 for rainfed areas. Irrigated areas can be360
computed with great certainty and uncertainties were greatest for the small island nations and few other countries. If the 8361
outlier nations are removed, for the rest 47 countries the R-square values with MIRCA2000 increased to 0.6 for the rainfed362
areas. As expected, uncertainties were higher for rainfed croplands and this was mainly as a result of highly fragmented, low363
biomass croplands that were either confused with grasslands in savannas or regrowth vegetation in the humid tropics. It also364
has to be noted that MIRCA2000 data which relays on the national statistics also has great degree of uncertainty in rainfed365
cropland estimates.366
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Figure 10: The global cropland product of Africa @ 250-m (this study) or GFSAD250 reference cropland layer for the year 2014 (RCL2014) irriga-
tion/rainfed country area vs MIRCA2000. (a) Comparison of country-level estimates of cropland area from the new dataset presented in this paper against
corresponding data from MIRCA2000 irrigation area. (b) Comparison of country-level estimates of cropland area from the new dataset presented in this
paper against corresponding data from MIRCA2000 rainfed area.

4.1.3. Cropping intensity367

In both irrigated and rainfed areas of Africa, single crop is overwhelmingly dominant (Figure 7c, and Table 6). Of the 330368
Mha of gross cropland areas during the year 2014, rainfed single crop gross areas was 136.9 Mha (Class 5 and 6 in Table 6).369
This was followed by rainfed continuous crop gross areas with 79.83 Mha, rainfed double crop gross areas with 40.56 Mha,370
and irrigated double crop gross areas with 24.17 Mha (Table 6). Gross areas of irrigation single crop during season 1 (4.61371
Mha), season 2 (4.84 Mha), and continuous (3.07 Mha) were much smaller. Cropland fallows were 36 Mha during 2014,372
almost all of that in rainfed croplands with a negligible portion in irrigated croplands (Table 6).373

4.1.4. Cropping seasonal Layer374

Cropland areas are also mapped for two main seasons, continuous crops and a combination of the two seasons (Figure 8,375
Table 6). Season 1 (January-May) and season 2 (June-September). Much of the season 1 crops are in Southern Africa and376
North Africa, while season 2 is mainly distributed in West and Central Africa. Irrigated crops and continuous plantation377
crops are seen in both seasons, while continuous crops concentrated in West and Central Africa. Overall, for entire Africa,378
net cropland areas (NCAs) for season 1 was 95 Mha (Figure 8a, Table 6) and for season 2 was 117 Mha (Figure 8b, Table 6),379
and 84 Mha for continuous (Figure 8c).380
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Table 6: RCL2014 cropland area seasonal and total statistics of Africa for the year 2014 using MODIS 250m time-series. The year 2014 cropland area
statistics of Africa for the 8 cropland classes and the cropland fallow class. Sub-pixel areas (SPAs) or actual areas were computed for the season 1

(January-May), season 2 (June-September), and for the continuous cropping. Net cropland areas of each season were summed to obtain gross cropland
areas from both seasons and for continuous plantation crops.

# Class
Season 1 (Mha) Season 2 (Mha) Continuous (Mha) Total (Gross Area, Mha)

FPA CAF SPA FPA CAF SPA FPA CAF SPA SPA
1 Irrigated, SC, season 2 5.09 0.95 4.84 4.84
2 Irrigated, SC, season 1 5.12 0.90 4.61 4.61
3 Irrigated, DC, 13.06 0.92 12.02 13.06 0.93 12.15 24.17
4 Irrigated, Continuous 3.37 0.91 3.07 3.07
5 Rainfed, SC, season 2 93.31 0.85 79.32 79.32
6 Rainfed, SC, season 1 73.82 0.78 57.58 57.58
7 Rainfed, DC, 25.51 0.76 19.39 25.51 0.83 21.17 40.56
8 Rainfed, Continuous 89.70 0.89 79.83 79.83
9 Rainfed, Fallowlands 36.00
Net Crop Area (without Fallow) 260

Net Crop Area (with Fallow) 296
Gross Crop Area (with Fallow) 330

Note: season 1: Oct - Mar, season 2: May - Sep.
FPA (Full-Pixel Area) is determined by aggregation of reprojected MODIS Pixels
CAF (Crop area Fraction) is determined by developing relationship between NDVI of growing season with percent cover
SPA (Sub-pixel area) is FPA multiplied by CAF

4.2. Error matrix comparing ACP2014 with RCL2014381

Automated cropland classification algorithm (ACMA) algorithm was applied on MODIS 250m time-series mega file data382
cube for the year 2014 (MFDC2014) to obtain an ACMA derived cropland product for the year 2014 (ACL2014) which383
was then compared with RCL2014, pixel by pixel for entire Africa involving over little over 64.6 million of MODIS 250m384
pixels in a similarity matrix (Table 7). The similarity between ACL2014 and RCL2014 was over 90% for every class with385
overall accuracy of 96% (kappa 0.72). Thus, the ability of ACMA to replicate the nine classes in RCL2014 with high level386
of accuracies was clearly established.387

4.3. ACMA derived annual cropland layers from 2003-2014388

We applied ACMA algorithm for 11 independent years (2003 through 2014) using MODIS 250 m every 16-day time-series389
data of these years available on Google Earth Engine. The results as depicted in Figure 11 showed that the: a) net cropland390
areas (NCAs) of Africa increased by about 11 Mha from 2003 to 2014, varying from 253 Mha to 264 Mha; b) gross cropland391
areas (GCAs) Africa also increase by about 13 Mha from 2003 to 2014, varying from 323 Mha to 330 Mha; c) cropland392
fallows of Africa decreased by about 10 Mha from 2003 to 2014, varying from 43 Mha to 30 Mha. This is, roughly an393
increase of 1 Mha of croplands per year, whereas there was a decrease of 1 Mha of cropland fallows per year during the394
same period. This can only increase further with rapid increase in population and increase food and nutritional demands of395
the populations. The ability of ACMA algorithm to compute croplands as well as cropland fallows is important one. In396
drought year cropland fallows increase and cropland areas decrease.397
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Table 7: Similarity matrix between ACMA derived cropland product for the year 2014 (ACL2014) with reference cropland layer (RCL2014).

RCL2014

Class 1. Irrigated, 
SC, season 2

2. Irrigated, 
SC, season 1

3. Irrigated, 
DC, 

4. Irrigated, 
Continuous

5. Rainfed, 
SC, season 2

6. Rainfed, 
SC, season 1

7. Rainfed, 
DC, 

8. Rainfed, 
Continuous

9. Fallow- 
lands

User 
Accuracy

1. Irrigated, SC, season 2 813,282 21,517 97.4%
2. Irrigated, SC, season 1 25,992 772,998 10,400 95.5%
3. Irrigated, DC, 9,455 548,804 13,908 95.9%
4. Irrigated, Continuous 11,122 514,613 97.9%
5. Rainfed, SC, season 2 14,207,104 501,841 96.6%
6. Rainfed, SC, season 1 731 12,564,794 511,298 96.1%
7. Rainfed, DC, 145,763 4,570,981 581,352 86.3%
8. Rainfed, Continuous 166,553 11,270,691 208,927 96.8%
9. Fallow-lands 166,553 16,994,878 99.0%
Total 839,274 803,970 570,326 528,521 14,207,835 13,212,398 5,248,832 12,018,596 17,203,805
Producer Accuracy 96.9% 96.1% 96.2% 97.4% 100.0% 95.1% 87.1% 93.8% 98.79%

Overall Similarity 0.963
Kappa 0.720
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Figure 11: ACL2003 to ACL2014 derived cropland areas versus cropland fallow areas.

The ability of ACMA to capture variability are depicted between precipitation, ndvi and cropland areas. During drought398
years, we see dramatic: 1. increase in cropland fallows, and 2. decrease in cropland areas. Also during drought years, there399
is a significant decrease in the vigor of the existing croplands as illustrated by MODIS 250-m time-series NDVI plots. For400
example, in the 40,337 hectares’ portion of area for AEZ3 depicted in Figure 13, 57% was cropland fallows during the401
drought year of 2005, whereas during the normal year of 2008 there was 35% fallow and during the good year of 2006 there402
were only 4% fallows. Similarly, in 0.62 Mha portion of cropland area in AEZ5 depicted in Figure 12, 21% was cropland403
fallows during the drought year of 2005, whereas during the normal year of 2008 there was 12% fallow and during the404
good year of 2006 there were only 10% fallows. The NDVI vigor trends also clearly depict drought, normal, and good405
years. Thereby, the ability of ACMA to highlight the combination of the above three factors highlights its value in assessing406
food security. There can not be direct accuracy assessment of other years without ground reference data. Nevertheless,407
We established an online utility called CropRef to generate reference samples using crowdsourcing in our project website408
https://croplands.org. This allows the use of Very High Resolution Imagery (VHRI) from DigitalGlobe and similar sub-meter409
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to 5-meter imagery to help generate year specific validation data in the future.410

Figure 12: ACMA derived croplands versus cropland fallows for a drought year (2005), normal year (2008), and wet year (2006) in AEZ3. The figure
shows spatial distribution of croplands versus cropland fallows (left), mean MODIS 250-m NDVI during the three-year (top right) and precipitation (bottom
right).
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Figure 13: ACMA derived croplands versus cropland fallows for a drought year (2005), normal year (2008), and wet year (2006) in AEZ5. The figure
shows spatial distribution of croplands versus cropland fallows (left), mean MODIS 250-m NDVI during the three-year (top right) and precipitation (bottom
right).

5. Discussion411

Efficient annual cropland mapping approaches for operational cropland characterization, mapping, and monitoring must412
comply with several requirements such as reliability, accuracy, automation and effectiveness. This study demonstrated the413
ability of the recursive automated cropland mapping algorithm (ACMA) rules to accurately capture the available cropland414
information over large areas. The process involves the concept of using the knowledge base in the reference cropland415
layer (RCL) to train and build ACMA algorithm and replicate the RCL accurately and routinely within and across years.416
Testing and validation of ACMA require us to capture accurate knowledge base from multiple sources (ground samples,417
photo-interpret, and expert-knowledge). Since the uncertainty of this method depends on the quality and quantity of418
the reference cropland layer as a primary input, we designed a robust open framework and web-based support system419
https://croplands.org to support, create, and update this reference cropland layer easily. In this research we trained recursive420
decision tree ACMA algorithm to achieve very high levels of accuracies (>90%) for 4 irrigated, 4 rainfed, and 1 fallow421
classes. Larger, and higher quality reference data would facilitate development of accurate automated cropland classification422
algorithms (ACMA). Here, reference cropland layer (RCL) was used to understand, map and model: 1) knowledge captured423
from different sources; 2) recursive temporal rules for every pixel; 2) the strengths of the generalized rules.424

To achieve greater accuracies, development of ACMA need to be done considering: (a) cropland masks, (b) AEZs, and (c)425
richness (quality, quantity, and spatial spread) of the reference data. The AEZs help us focus on certain agro-climatic zones426
and capture their unique characteristics. Along with the AEZ approach, the 250-m Crop mask derived from multiple sources427
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is an important starting point for this study to make significant advance from previous studies. This allowed us to conduct428
this research by focusing heavily within the cropland mask, where majority (>95%) of the present croplands of Africa exists.429
Nevertheless, it is important to check any expansion of croplands beyond the existing cropland mask. This requires us to 1)430
carefully choose the way to stratify the input MODIS data; 2) Collect reference data using crowdsourcing technique and431
interpret them with correctly. Until we can establish the effective knowledge-based decision-tree and verify the classification432
output with acceptable accuracies, it is not prudent to apply recursive decision tree ACMA algorithm across the continent433
with equal certainty. That is all the more reason to approach the ACMA development using AEZs.434

The biggest difficulty in ACMA development and testing is in gathering sufficient training and validation samples to support435
reliable ACMA coding, rapid product delivery, and accurate product development over such large areas as African continent.436
A certain class in a particular AEZ may have the lowest producer’s and user’s accuracies not because of the uncertainty in437
the classification algorithms but as a result of the poor or biased training and validation datasets. Another challenge comes438
from up-scaling the local cropland mapping to the continental or global scales through knowledge capture from a zonal439
decision-tree. Another challenge was to accurately map fallow cropland because of: 1. too few cropland fallow samples, 2.440
complexity of fallows in defining them, and 3. classification error between cropland fallows and low-density non-cropland441
vegetation. This might be controlled by better describing the temporal behavior of cropland fallows and updating cropland442
mask when necessary.443

The goal was not to map to many classes where achieving high accuracies becomes complicated, but replicating them year444
after year (section 4.3) accurately becomes extremely difficult over very large areas. However, mapping a known number of445
classes accurately and with ability to replicate year after year also accurately is crucial and meets the important challenge of446
gathering routine and repetitive cropland statistics over time and space, thus contributing to food security (Figure 9, 10,447
11). Often the knowledge of the zonal decision-trees that comes from the reference data sourced from ground samples,448
photo-interpretation, and expert-knowledge for that zone enriches the recursive ACMA rules for that zone and extrapolation449
of the same to other zones may not be applicable.450

The MODIS 250-m resolution is suitable for national and sub-national applications for the continental level cropland451
mapping and for deriving cropland statistics at the country and sub-national level. The ability of ACMA to use MODIS452
time-series data and provide accurate annual updated cropland products is of great interest to the global change science453
community that benefits from these dynamics because it provides: (a) spatial information content specialized for agriculture;454
(b) globally consistent and locally relevant information.455

In this paper, we present the attempt by tuning classifiers within AEZs rather than entire continent and move to Landsat456
data in future research. Statistical approaches will have many subjective data gathering techniques that can make the areas457
collected by this approach uncertain. With different countries having widely varying approaches to statistical data collection,458
it is hard to standardize. This is the main cause of the scatter we see in Figure 9. However, for the 47 of the 55 countries459
the relationship between the remote sensing derived and the MIRCA derived statistics have very good correlation. The460
advantage of the remote sensing approach is that once the ACMA type algorithms mature, they can be used for routine,461
repeated, and accurate computation of cropland statistics. In the future, attempts should also be made to better derive462
statistical areas through standardization and harmonization of data collection and reporting mechanisms across countries.463
This along with improved remote sensing products with improved ACMA will better help compare remote sensing derived464
areas with statistically derived areas.465

The use of GEE in data collection to identify reference samples in areas where ground data is lacking does present some466
new challenges. Sampling and selecting of a homogenous pixel at MODIS scale is not easy sometimes, especially working467
in Africa. This issue can only be controlled through cleaning the input samples with more ancillary data layers where468
available and remove the outliner as much as possible. Using Google Earth Engine for identifying reference samples to is469
also debated because they are just interpreted results, not as valuable as the data collected from the field. However, previous470
research supports the idea that simple, rapid approaches to land cover mapping have benefits. See et al. (2013) found471
that crowdsourced data from Google Earth delineating the spatial distribution of cropland in Ethiopia had a higher overall472
accuracy than global land cover datasets. When analyzing the crowdsourced data itself, users underestimate the degree of473
human impact and there was little difference between experts and non-experts in identifying human impacts.474
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6. Conclusions475

We developed and implemented an automated cropland mapping algorithm (ACMA) using MODIS 250-m 16-day NDVI476
time-series data. First, a web-based in-situ reference dataset repository (https://croplands.org/) was developed to collect477
ground data through field visits as well as through community by crowdsourcing. Comprehensive knowledge base was478
then established for Africa using the web repository.Second, a reference cropland layer for the year 2014 (RCL2014) was479
produced for the entire African continent consisting of 5 crop products: 1. Cropland extent and areas, 2. Irrigated versus480
rainfed croplands, 3. Cropping intensities, 4. Crop type and/or dominance, and 5. Croplands versus cropland fallows. Third,481
decision-tree algorithms were established for the eight individual agro-ecological zones based on RCL2014 knowledge482
base which was subsequently composed into an automated cropland mapping algorithm (ACMA) applicable for the entire483
African continent.484

The ACMA generated cropland layer for the year 2014 for Africa (ACL2014) when validated showed overall accuracies485
greater than 89% for each of the eight AEZs. This demonstrated the ability of ACMA to automatically produce cropland486
products with acceptable accuracies. A country-by-country cropland areas statistics of all 55 African Countries generated487
from this study was compared with the national census data based MIRCA2000 which were also updated in the year 2014.488
The relationships showed significant correlations with R-square values between 0.6 to 0.83 for 47 of 55 countries. A489
pixel-based agreement between the map produced in this study and a number of other studies showed uncertainties varying490
between 15 to 25%. Overall, for the year 2014, the net cultivated cropland area for the entire African continent was 260491
Mha with an additional 36 Mha left fallow. The gross cropland area was 330 Mha. Of the 296 Mha (cultivated + fallow) of492
cropland areas , 91.7% (271 Mha) was rainfed and 8.3% (25 Mha) was irrigated. Net cropland area distribution in Africa493
was 94 Mha during season 1, 117 Mha during season 2, and 84 Mha continuous.494

Finally, ACMA algorithm was deployed on the Google Earth Engine cloud computing platform (with executable GEE codes495
shared at GitHub: https://github.com/suredream/ACM2016), and applied on MODIS data from years 2003 through 2014, to496
produce annual ACMA generated cropland layers for these years (ACL2003 through ACL2014). The results showed that497
over 12 years in the African continent there was, on an average, about: (a) 1 Mha/year increase in croplands areas, and (b) 1498
Mha/year decrease in cropland fallow areas. The ACMA algorithm clearly demonstrated the ability to accurately capture499
variations in: A. cropland areas, B. cropland fallow areas, and C. cropland vigor, during drought, normal, and above-normal500
years routinely and repeatedly year after year over large areas such as for the large continent of Africa. Such ability of the501
ACMA algorithm clearly provides the needed cropland products for assessing food security. To serve the requirement of502
resource managers as well as that of the global change research community better, the product and algorithm are made503
publicly available at: https://croplands.org/ and http://geography.wr.usgs.gov/science/croplands/algorithms/africa_250m.504
html.505
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