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Note: 1 ki = 1,000,000,000,000 liters or 1 trillion iters) of water Data Source: The World's Water, Volume 7 (Gleick, 2011)




“Global Croplands and Their Water Use” is the theme of this month’s

special issue. The top image shows spatial distribution of glob-
al cropland areas (~1.5 billion hectares) and five dominant crop
types (wheat, rice, maize, barley and soybeans). This composite
map was produced by Thenkabail and Gumma through spatial
modeling involving remote sensing derived global irrigated and
rainfed croplands (Thenkabail et al., 2011, 2009a, 2009b) and
five dominant global crop types from other sources (Ramankutty
et al. (2008), Monfreda et al. (2008), and Portman er al. (2009)).

The bottom image, produced using data from World's Water
Volume 7 (Gleick, 2011), shows country by country agricultural
water use. Globally, humans use about 4000 km™\yr of freshwater
of which about 70% goes for agriculture to produce food. Just four
countries use 52% of this 70%: India 684 km"\yr, China 364 km™\
yr, USA 197 km™\yr, and Pakistan 172 km*\yr.

For details see the Highlight article in this issue.

Cover page credits: Dr. Prasad S. Thenkabail, U.S. Geological

Survey (USGS) and Dr. Murali Krishna Gumma, International Rice Research Institute (IRRI) with
inputs from the USGS Powell Center working group on global croplands (WGGC) team members
(http://powellcenter.usgs. gov/curreni_projects.php#GlobalCroplandMembers). For more information

contact: pthenkabail @usgs.gov or thenkabail @ gmail.com.
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Assessing Furue Risks 7o AGRiCULT
Warer Resources Anp Foon SEcuRiTy:
How Can Remore Sensing HeLP?

By Prasad S. Thenkabail, Jerry W. Knox, Mutlu Ozdogan, Murali Krishna Gumma,
Russell G. Congalton, Zhuoting Wu, Cristina Milesi, Alex Finkral, Mike Marshall,
Isabella Mariotto, Songcai You, Chandra Giri, and Pamela Nagler

Introduction

Although global food production has been rising, the world still faces a
major food security challenge. Over one billion people are currently un-
dernourished (Wheeler and Kay, 2010). By the 2050s, the human popula-
tion is projected to grow to 9.1 billion. Over three-quarters of these people
will be living in developing countries, in regions that already lack the ca-
pacity to feed their populations. Under current agricultural practices, the
increased demand for food would require in excess of one billion hectares
of new cropland, nearly equivalent to the land area of the United States,
and would lead to significant increases in greenhouse gases (Tillman et al.,
2011). Since climate is the primary determinant of agricultural productiv-
ity, changes to it will influence not only crop yields, but also hydrologic
balances and supplies of inputs to managed farming systems, and may
lead to a shift in the geographic location of some crops. Therefore, not
only must crop productivity (yield per unit of land; kg/m”) increase, but
water productivity (yield per unit of water or “crop per drop”; kg/m’) must
increase as well in order to feed a burgeoning population against a back-
drop of changing dietary consumption patterns, a changing climate and
the growing scarcity of water and land (Beddington, 2010). The impact
from these changes will affect the viability of both dryland subsistence

“Under current agricultural practices, the increased demand
for food would require in excess of one billion hectares

(~ equivalent to the land area of the United States) of new
cmpland to feed the 9 billion plus by year 2050.”

mmodity food production (Knox, ef al., 2010a). Since cli-
y determinant of agricultural productivity, any changes
ly crop yields, but also the hydrologic balances, and
managed farming systems as well as potentially
for specific crops. Unless concerted and
risks worldwide food shortages, scar-
cient energy. This has the potential to
conflicts and migration as people flee
: safe havens", a situation that
01

toring of croplands us-

nd with sufficient
ill help determine

The yield gap — the difference be-
tween potential and actual yield — is
awidespread problem that constrains
production in both the developed
and developing worlds, particularly
since croplands account for 80 per-
cent of worldwide freshwater extrac-
tions (Licker ef al., 2010). Further,
we must seek to better understand
the links between food production
and water scarcity, and the variety
of impacts that climate change may
have on food supplies (Knox et al.,
2010b). In some countries, cropped
areas available for food production
have begun to decline in response
to increased demand for bio-fuel production, encroachment from urban-
ization, land degradation from mismanagement, and enhanced interest in
environmental protection. Emerging insistence on biodiversity conserva-
tion and carbon sequestration have also put a cap on possible expansion of
cropland into areas such as forests and rangelands.

Given these complexities, together with the need to improve our under-
standing of the range of options and the global scale of the overarching is-
sues, remote sensing will play an increasingly significant role in supporting
both data collection and policy formulation. This will include the creation
of a framework of best practices and an advanced global geospatial infor-
mation system on cropland and water use. Such a system would need to be
consistent among nations and regions. It would provide information on is-
sues such as the composition and location of cropping, number of crops per
year, rotations, crop health and vigor, irrigation status, flood and drought
risk, water demand, and crop and water productivity. Such a global system
can be established by fusing advanced remote sensing data from diverse
platforms and agencies (e.g., http://wgiss.ceos.org/lsip/satellites midres].
shtml; http://www.ceos-cove.org/index.php) in combination with national
statistics; secondary data, such as elevation, slope, soils, temperature, and
precipitation; and, systematic collection of field level observations.

This paper provides a brief overview of the state of the art by which
remote sensing technologies can encompass global cropland assessment
and the tole these technologies can play in the new food security para-
digm. We will highlight the main areas of progress and then identify the
key challenges that need to be addressed.

continued on page 774
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continued from page 773

State of the Art in Global Cropland Assessment
There are currently five major global cropland maps: (1) Thenkabail ef al.
(2009a.b, 2011), (2) Ramankutty et al. (1998), (3) Goldewijk er al. (2011),
{4) Portmann et al. (2009)\Siebert and D&ll (2009), and (5) Pittman es al.
{iﬂlﬂ) These studies have all estimated total worldwide cropland area to be
around 1.5 billion hectares, using the year 2000 as a baseline. Throughout
the Earth, cropland areas have increased from around 265 Mha in 1700 to
amund-l 471 Mha in 1990, while pasture area has increased over sixfold,
to 3,451 Mha (Foley et al., 2011). Ramankutty and Foley (1999)
cropland and pasture to represent about 36 percent of the world's
trial ’surface (148 940,000 km’) Accordmg to a number of studies,

3 pmduc_tn_on, supply, and dlstnbutlon (PSD) da-
e cropland/non-cropland maps. Thenkabail and
duced the first remote sensing-based worldwide

ﬂ _free access t_o well
at and Moderate Resolution

or water use). Improved knowledge of the uncertainties (see Congalton and
Green, 2009) in these estimates will lead to a collection of highly accurate
spatial data products to support crop modeling, food security analysis, and
decision making.

One important variable affecting global food production is agricultural
water use. Figure 2 shows the estimated demand for agricultural water us-
ing data by Gleick (2011), at country scale. Worldwide, humans use about
4,000 km® per year of fresh water, of which about 80 percent is used by ag-
riculture for food crop production. However, other estimates of Worldwide
agricultural cropland water use vary between 6,685 to 7,500 km' per year
(Siebert and Doll, 2008), of which around 4,586 km® per year is by rain-
fed croplands (green water use) and the rest by irrigated croplands (blue
water use) (Thenkabail er @l., 2010). Irrigated areas use about 2,099 km’
yr ' (1,180 km’ per year of blue water and the rest from rain that falls over
irrigated croplands; Siebert and Doll, 2008). Four countries account for the
overwhelming proportion of total agricultural water extraction (India 684
km’yr', China 364 km® yr', the USA 197 km’ yr', and Pakistan 172 km’ yr
'; Figure 2). Agricultural water use depends on many factors; these include
crop type, cropped area, irrigated area, irrigation efficiency, local agrocli-
mate, geographic location, management practices, and evapotranspiration
(ET,_ ). However, the routine mapping of crop types typically applies an av-
erage water consumption value only somewhat modulated by management
and geographic context. High resolution mapping sufficient to establish
more accurate water use characteristics at global scales is required, and this
is quite complex. Hence, initially the predominant focus of Earth’s cropland
mapping should focus on 18 dominant crop types that collectively account
for 85 percent of the global high-resolution cropland area (Table 1). This
recommendation was made by the U.S. Geological Survey (USGS) work-
ing group on global croplands (https:/powellcenter.usgs.gov/globalcrop-
landwater/) at the John Wesley Powell Center for Analysis and Synthesis
at their 2011 meeting in Fort Collins, Colorado, USA: http://powellcenter.
usgs.gov//current_projects.php#GlobalCroplandMembers.

Table 1. Area and relative proportion of the 18 major crop characteristics.
[Source: Monfreda ef al., 2008].

Crop Area (1,000 km?) Relative Proportion (%)

Wheat 4,028 22
Comn 2,271 13
Rice 1,956 1
Barley 1,580 9
Soybeans 927 5
Pulses 794 4
Cotton 534 <)
Potatoes 501 3
‘Sorghum 501 3
Millet 331 2
‘Sunflower 290 2
Rye 288 2
Rapeseed/canola 283 2
Sugar cane 265 1
Groundnuts/peanuts 247 1
1SSaVE 235 1
154 1

72 <1

15,256 85

2,664 15

17,920 100
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Components of Global Cropland Mapping Using
Remote Sensing

Remotely sensed data provides the only source of information to make a
complex global agricultural monitoring system feasible by being consis-
tent, repeatable, routine, rapid, and scalable. One way forward in cropland
mapping will be to use satellite data with a resolution that matches the
spatial heterogeneity of the landscape (i.e., 30 meters or better, such as
from Landsat) along with more frequent observations (e.g., daily cover-
age with much coarser spatial resolution from sensors such as the MODIS
250m to 500m data). To these add secondary data (e.g., elevation, pre-
cipitation, evapotranspiration (ET), and temperature), national and sub-
national statistics, and a large volume of in-situ observations that are spa-
tially well distributed. The collection and fusion of these data will allow
production of cropland area statistics and crop productivity data ranging
from pixel to administrative unit level, both routinely and rapidly, using
automated cropland classification algorithms (or ACCAs) as introduced
by Thenkabail ef al. (in review).

e ¥
DEM{GTOPO30) 1 km background image
Bw:m

5000
3000
sm
[ Countries
level6_Bciasses
01, Irigated: wheat and rice dominant
- Imgated mixed crops 1° wheal, rice, barley and soybeans
i 03, Imigated mixed crops 2. com, wheal, rice, ootton and orchards
B 04, Rainfed. wheat, fice, soybeans, sugarcane, coim and cassava
105, Reinfed. wheat and bariey dominent K
06. Rainfed corn and scybeans dominant

maps (LULC) (Loveland et al., 2000) but not the
cally delineate a single category, such as croplands.

Development of a Historical Understanding of
Through a Remote Sensing Pathfinder Dataset
The green revolution era occurred roughly between 1960 :
interesting to examine the rapid expansion and intensification of glob-
al croplands during this period. Worldwide coverage of remo sens-
ing data for the early years (1960s) of the green revolution is sporad
Earth observation from satellites began when the Soviet Union launc
Sputnik 1 in 1957, followed by NASA's Television Infrared Observation
Satellite (TIROS-1), launched on 1 April 1960. Systematic global Earth
observation data acquisition began with NOAA’s Very High Resolution
Radiometer (VHRR) and Advanced VHRR (AVHRR) in 1972, ERTS |
(Earth Resources Technology Satellites, later Landsat) also in 1972, SPOT

(France) in 1986, and IRS (India) in 1988,

Figure 1. Spatial distribution of the five major global cropland types (wheat, rice, corn, barley and soybeans; which occupy 60% of
all global cropland areas). The map is produced by overlying the five dominant crops of the world produced by Ramankutty et al.
(2008), Monfreda et al. (2008), and Portman et al. (2009) over the remote sensing derived global irrigated and rainfed cropland area
map of the International Water Management Institute (IWMI; Thenkabail et al., 2009a, 2009b, 2011).

The specific remote sensing advances (Thenkabail e al, 2010) that
enable global cropland mapping and generation of their statistics include
these factors: (a) free access to well calibrated data such as Landsat and
MODIS; (b) frequent temporal coverage as provided by MODIS, NPOESS
Preparatory Project Visible Infrared Imager Radiometer Suite (NPP VIIRS),
and Satellite Pour I’Observation de la Terre (SPOT) Vegetation; (c) frequent
sampling of large portions of the world from sensors matching the 30-100
m landscape scale (e.g., Landsat, Indian Remote Sensing Satellites (IRS),
SPOT) and very high resolution sensors from the sub-meter to <5m range
(e.g., RapidEye, IKONOS, QuickBird, GeoEye) from different space agen-
cies of the world; (d) free access to high quality secondary data such as
long-term precipitation, evapotranspiration, surface temperature, soils in-
formation, and Global Digital Elevation Model (GDEM) data; (e) global
coverage; (f) web-access for immediate data access from anywhere in the

world; (g) advances in computer technology, including processing speed

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

However, the availability of high quality, well calibrated remote sensing
pathfinder datasets allows scientists to develop a global inventory of histori-
cal cropland information dating back to the 1970s. There are still problems
with calibration of data from certain sensors (e.g., Landsat MSS), but work
is underway to address them. The sources of these datasets include AVHRR
Global Inventory Modeling and Mapping Studies (GIMMS; 1981-2006),
MODIS time-series (2000-present), and Landsat Global Land Survey nomi-
nal 30 m mosaics for the 1970s, 1980s, 1990s, 2000s, a mid-decadal 2005,
and 2010s. These data will help build an inventory of historical agricultural
development by providing information on such factors as which areas have
switched from rainfed to irrigated production (both full and supplemental),
and non-cropped to cropped (and vice versa). A complete history will re-
quire systematic analysis of remotely sensed data as well as a compilation
of all routinely populated cropland databases from the agricultural depart-
ments of all countries throughout the world.

continued on page 776
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g Agricultural water use

by country (km'lyr)
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Data Source: The World's Water, Volume 7 (Gleick, 2011)

Flgure 2. Country-wise agricultural crop water use in km?/yr. In Indla China, and Paklstan as a result of double and triple cropping
that are irrigated, the water use is dominated by irrigated croplands (blue water use). In USA, the water use is dominated by rainfed

croplands (green water use). Data source: Gleick (2011).

Cropland Monitoring in the 21st Century

The emphasis on global crop-specific monitoring in the 21st century will in-
volve fusion of data collected by a wide array of satellites and sensors from nu-
merous national space agencies. This will allow us to capture phenology along
with crop types. growth stages, their source of water (irrigated or rainfed), and
their productivity. These satellites can be categorized as follows: (a) coarse
spatial resolution sensors (>100m) with frequent, even daily coverage of the
world (e.g., AVHRR, MODIS, and Visible Infrared Imager Radiometer Suite
VIIRS, NASA); (b) high resolution (30—100m) with less frequent coverage of
the world, about once in 8 to 16 days, (e.g., Landsat, RESOURCESAT, SPOT,
and China-Brazil Earth Resource Satellite-CBERS); (c) very high resolution
(sub-meter to <30 m) with infrequent coverage of the world, that is, based
‘on need, (e.g., IKONOS, QuickBird, GeoEye, RapidEye, WorldView-2); (d)
‘non-optical sensors, such as Radarsat, and Japanese Earth Resource Satellite

“A step toward ensuring food security in the 21st Century
in improving the monitoring of croplands using a
ans to map them routinely, rapidly, consistently, and with

pius,DMC Intcmauonal ]magmg (DMCii) dlsaster
An excellent catalogue of these satellites and sen-
giss.ceos.org/lsip/satellites midres1.shtml or http://
x.php. Cropland monitoring in the 21st century will
-combination (Thenkabail ef al., 2011) from these
advances in components of global cropland
/ious section), gaining a historical per-
vious sub-section), applying data fusion
Ja, b), and developing automated cropland

Automated Methods for Cropland Mapping Globally

There is a growing body of scientific evidence on mapping of both irri-
gated and rainfed cropland based on classification and analysis of remotely
sensed data (Friedl ef al., 2002; Hansen et al., 2002; Loveland ef al., 2000;
Ozdogan and Woodcock, 2006; Thenkabail et al., 2009a,b; Wardlow and
Egbert, 2008; Wardlow er al., 2006; Wardlow er al., 2007; Xiao et al.,
2006). Some of the methods used include: (a) spectral matching techniques
(SMTs); (b) decision tree algorithms; (c) tasseled cap brightness-greenness-
wetness transformation; (d) space-time spiral curves; (e) Change Vector
Analysis (CVA); (f) phenology; and, (g) fusion of climate data with remote-
ly sensed observations. Coincidentally, these methods also allow sub-pixel
calculation of the areas. Most of these approaches rely extensively on hu-
man interpretation, making the process resource-intensive, time consuming,
and difficult to repeat for both space and frequency.

There is a growing need for improved data on cropland mapping, par-
ticularly over large areas —countries or regions such as river basins —
in order to address food and water security issues. Effective operational
cropland mapping must be automated, accurate, and be able to provide
maps, statistics, and crop characteristics quickly, that is, maps should be
produced within a few hours or days, repeatedly over space and time.

Fully automated methods do not yet exist, especially over large areas.
The best methods are semi-automated, require substantial human inter-
vention, and include major uncertainties when working with independent
datasets or when applied to areas away from locations for which they were
originally developed. These methods include (Thenkabail et @/, in re-
view): (a) Spectral Matching Techniques (SMTs), (b) Ensemble of Machine
Learning Algorithms (EMLAS) (e.g., decision trees, neural networks); and,
(¢) Classification and Regression Trees (CART). The principle of SMTs
(Thenkabail er al., 2007) is to match the shape and/or magnitude of the
Normalized Difference Vegetation Index (NDVI) or similar index or band
reflectivity to an ideal or target spectrum (pure class or “end-member”).
Thenkabail ef al. (2007) advocated four key SMTs: (1) Spectral Correlation
Similarity (SCS) — a measure of shape; (2) Spectral Similarity Value (SSV)

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



— a measure of bdth_.shape-mﬂ-ﬁﬁgn i
(EDS) — a distance measuremen
Similarity (MSAS) — a hyper angls
tree algorithms and neural networks (Ch
computationally fast to implement. CART
(DT) that takes spectral and ancillary data and
points or terminal nodes are reached (Zheng
All these methods are powerful, and hav
mated. Nevertheless, implementation of these alg
complexity of methods, inability to demonstrate r
for substantial expert input to train algorithms to
mapping over time. Furthermore, it is neces- .
sary to create new perspectives and concepts m
order to develop simple algorithms that are au-
tomated and can generate instant and accurate
computations of cropland areas and their char-
acteristics over large areas repeatedly season
after season, year after year. A recent advance
in automating the cropland classification pro-
cess has been proposed by Thenkabail ef al., (in
review), in what they define as an Automated
Cropland Classification Algorithm (ACCA).
The process of creating an ACCA involves
three steps. First, an accurate cropland truth lay-
er (CTL) is obtained from other reliable sources
(e.g., National Systems such as USDA cropland
data layer) or generated using a megafile data
cube (MFDC) validated by in-situ observations.
The MFDC fuses data from multiple sources:
first, Landsat and MODIS throughout the grow-
ing season, monthly composites, for example.
Next, the MFDC is linked with secondary data
such as Shuttle Radar Topography Mission

(SRTM) elevation, slopes, precipitation, tem-

perature, evapotranspiration, and in-sifu data

that can include ground observations as well as
very high resolution (sub-meter to 5 meter) im-
age data. This step involves understanding agri-
cultural cropland dynamics and mapping these

lands through knowledge-capture techniques

such as: (a) identifying croplands versus non-
croplands and crop type or dominance based
on spectral matching techniques, decision trees,
Tasseled Cap bi-spectral plots, and very high res-

olution imagery; (b) determining irrigation status

based on temporal characteristics (e.g. NDVI),
water use by crops, secondary data (elevation,
precipitation, temperature), and identification

of irrigation structure (e.g., canals and wells);
(c) establishing which croplands are large scale
(contiguous) versus small scale (fragmented); ol
(d) characterizing cropping intensities as single,
double, triple, or continuous cropping; (e) in-
terpreting MODIS NDVI temporal bi-spectral
plots to identify and label classes; and, (f) using

in-situ data from very high resolution imagery, g0 e 3 Sample rules\codes in an automated cropland classification algorithm

field-plot data, and national statistics. The pro-  jjlustrated here for the Country of Tajikistan, that makes use of fusion of multi-sensor
cess of generating cropland truth layers (CTL) secondary data. Source: Thenkabail et al., in review. _
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continued from page 777
characteristics (e.g., irrigated versus rainfed) for a portion of the CTL. If the

'ACCA rule does not perfectly separate cropland areas and/or their characteris-
tics in the CTL, the rules are refined and re-run until we obtain a perfect or near
‘perfect match between the ACL and the CTL. Subsequent ACCA rules will
then be directed at replicating the remaining parts of the CTL until such rules,
which may be numerous, successfully separate all of the croplands and their
‘characteristics seen in the CTL. Once the ACCA 1s successfully established,
we now run the ACCA on independent MDFCs (e.g., from different years) for
‘the same area. Recent research by Thenkabail ef al. (in review) and Wu and
Thenkabail (in preparation) demonstrated that the ACL successfully mapped
‘croplands of an independent years for Tajikistan and California, typically,
Wftbdvar% percent overall accuracy. The ACL, for example, was produced
hin 30 minutes on a desktop Dell Precision T7400 for the entire coun-
istan once the MFDC for a year was composed and ready. Thus

concept is seamless over the entire country. It is extremely rapid;
1 be produced in hours, even minutes, depending on the scope of
| the computing power available. Moreover, it is repeatable year

ng a consistent set of multiple sensor data fusion organized in

\CCA algorithm, and it typically provides output within a few
urs. In spite of this hands-off approach, the accuracy of ACL’s

atasets is very high (Thenkabail ef al., in review; and Wu
1). An ACCA algorithm along with sample data-
ic over the USGS Powell Center web site on

ts.php#GlobalCroplandsAbstract .

Remote Sensing — Opportunities for Progress and
Challenges Ahead

Apart from the advances made in remote sensing of global croplands (pre-
vious sections), further advances in the application of remote sensing will
require additional components:

»  Develop the temporal history of crops: Cropland phenology, cropping
intensity, and crop calendars are best studied using a time-series of
remotely sensed observations. A first example is the one illustrated
for South Asia (Figure 4; adopted from Gumma ef al., 2011) us-
ing MODIS time-series data for rice-dominant cropped areas. This
will require a cropland knowledge base from precise locations. The
in-situ data (as illustrated for several points in Figure 4) need to be
collected routinely from large numbers of spatially well-distributed
points with precisely known coordinates in order to capture cropland
knowledge. Detailed field plot data will help establish cropping pat-
terns, calendars, intensity and types, as well as productivity or yield
(Dheeravath et al., 2010). A second example is the month by month
dynamics of the NOAA AVHRR NDVI (0.1 degree) of the irrigated
areas of the World illustrated for the year 2000 (Figure 5).

As we progress from one month to other we see the NDV1dynamics
of different parts of the world changing based on cropping phenology.
For example, in the Ganges river basin crops growing season peaks
during August-September (Season 1; Kharif) and February-March
(Season 2; Rabi) (Figure 5). In Argentina and Egypt’s Nile Basin the
crops peak during January through March (Figure 5). In the heavily ir-
rigated Nile Basin a second peak occurs during July and August. This
information can then be entered into automated and semi-automated
cropland classification algorithms (previous section).

+ Capture spectral signatures:

Scale
0 125250  500km
i s P

Rice classification (2000-01)

Irrigated (surface water)

B 1. Irrigated 100%—rice-rice

I 2. Irrigated 100%—rice-rice or rice-other crop

E I 3. Irrigated 100%—rice

Mix of rainfed and conjunctive irrigation

(surf: and g

B 4. Irrigated 60%/rainfed m’—ric-cthar crop

I s. Irrigated 30%/rainfed 70%—rice-rice or rice~other crop

Upland/dryland

I 6. Upland B0%/rainfed 10%firrigated 10%—rice

Mix of rainfed and irrigated (ground water)

I 7. Rainfed 60%/irrigated 40%—rice-rice

[ 8. Rainfed 80%/irrigated 10%—rice

| 9. Rainfed 95%/irrigated 5%—rice

Rainfed / deepwater

I 10. Deepwater 100%—rice—rice

I 11. Deep water 100%—water-rice
12, Wetlands 100%—rice-rice

13. Other land usefland cover

10°00N

Progress in remote sensing of ag-
ricultural croplands will require
that we model biophysical and
biochemical properties of crops
and their productivities with

WOUN

much greater accuracy than that
achieved to date. This will require
construction of a hyperspectral
crop library as seen in Figure 6.
It must document detailed spec-
tral characterization of crops
throughout the growing season in

20°00N

agricultural systems worldwide.
Hyperspectral  narrow  bands
(HNBs) and hyperspectral vegeta-
tion indices (HVIs), that are com-
puted based on specific portions
of the spectrum (Thenkabail and
Gumma, 2012. Thenkabail et al.,
2002) will help us model various

100N

crop biophysical and biochemi-

cal parameters with increasing

confidence. These parameters

otely sensed data illustrated for rice may include biomass, leaf area
will require us to develop index, yield, nitrogen, carotenoid,
crop in different agro-
rn will lead to accurate
oplands). [adopted from

anthocyanins, and plant water

content (a detailed discussion
of these is in Thenkabail et al.,
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Figure 6. Hyperspectral signature bank of world crops. The initial goal of a global cropland menitoring system should consist of
developing hyperspectral signature bank of major world crops (e.g., this figure) along with crop phenologies (e.g., Figure 4) in order
to: (a) establish improved models of crop biophysical and biochemical quantities, (b) increase crop classification accuracies, and (c)
produce accurate crop and water productivity models. The six leading world crops (Table 1) cover 64% of the global cropland areas.
Sample hyperspectral signatures of these six world crops are illustrated in the figure. The background image is irrigated and rainfed

croplands of the world (Thenkabail et al., 2011, 2009a, 2009b).

2011 , and Thenkabail and Gumma, 2012). The HNBs and HVIs
will also advance crop classification accuracies and improve crop
and water productivity models. Further, the collection of spectra
will act as a signature bank that can be used for future identifica-
tion and labeling of crops and their characteristics at local, regional,
national, and global levels. Acquisition of hyperspectral crop signa-
ture data (e.g., Figure 6) will become more routine with the launch
of the Hyperspectral Infrared Imager (HyspIR1I), which will provide
imaging spectroscopy data covering the entire world and acquired
every 19 days.

Importance of Accurate and Routine Cropland
Mapping in Crop Water use Assessments

There are significant advances in the last two decades in crop water use as-
sessments from actual evapotranspiration (ET ) modeling using remote
sensing data and methods (Zwart, 2010). By helping to monitor agricultur-
al water removal (evapotranspiration), these assessments can help reduce
the waste of water from agricultural activities, reduce over-exploitation
of aquifers, and optimize the scheduling of irrigation. In any case, the ac-
curacy of crop water use assessments relies on accurate cropland mapping
including types, growth stages, and crop health. Therefore, the advances
in cropland mapping discussed in this paper would also lead to improved
estimates of water use on croplands and help develop policies to grow
crops where it is most efficient in terms of water availability. This will be
of great importance given that nearly 70 to 80 percent of all human water
use on Earth is in the agriculture sector (Thenkabail et a/., 2010). Detailed
assessments of current and future changes in cropland will help us deter-
mine the water "footprint” of agricultural production and its dependence
~on "blue" and "green" sources. Blue water is associated with crop produc-
tion under irrigation with water obtained from lakes, reservoirs, rivers and
from the groundwater (saturated zone), Green water is associated with

780  August 2012

crop production from ramnfall and constitutes 70 percent of the water con-
sumed by croplands. These definitions have received widespread atten-
tion, particularly in policy discussions regarding water scarcity and food
security. However, the real challenge lies in reconciling the spatial and
temporal distributions of consumptive water use for agriculture with the
availability of local water resources, and then identifying opportunities to

reduce the environmental impact of agricultural demand.

Cropland Web Resources
There is an increasing volume of literature (published and gray), data and
information on global cropland mapping. A list of important sources is as
follows:

» https:/ipowellcenter.usgs.gov/globalcroplandwater/

»  http:/lwww.iwmigiam.org

»  http:/lwww.geog.mcgill.ca/~nramankutty/Datasets/Datasets.html

»  http:/lwww.sage.wisc.edu/mapsdatamodels.html|

* http:ilwww.fao.org/nriwater/aquastat/irrigationmaplindex.stm

+  http:/lwww.fao.org/nriwater/aquastat/main/index.stm

*  http:lwww.nass.usda.gov/research/Cropland/SARS1a.htm

«  http:/lwww.pecad.fas.usda.govicropexplorer/datasources.cfm

*  http:/lwww.geo.uni-frankfurt.de/ipg/ag/dliforschung/MIRCA/index.htm|

»  http:/lwww.geo.uni-frankfurt.de/ipg/ag/diiforschung/GCWM/index.html

* http:/lgcmd.nasa.govirecords/GCMD_SAGE_MAJORCROPS.html

*  http://lwww.mdpi.com/journal/remotesensing/special_issues/croplands/

* http:llwww.earthobservations.org/cop_ag_gams.shtml|

»  http://powellcenter.usgs.gov/current_projects.

php#GlobalCroplandsAbstract

+  hitp:iwww.earthobservations.org/cop_ag_gams.shtml

*  http:/lwww.ceos.org/

+ http:llsharaku.eorc.jaxa.jp/GSMaP/index.htm

+  http:/lkuroshio.eorc.jaxa.jp/JASMES/index.htm|
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Summary
This paper emphasizes the importance of remote sensing
research about ways to use its assets in global agricultural
ping and water use evaluation. Current cropland map Wm
from coarse resolution remotely sensed data and traditio
methods that require substantial human involvement. W
the advances and developmental needs of semi-automatec
classification algorithms in routine, rapid, and accurate mapping of
croplands and their characteristics. Advances in global croplan
will require data fusion and‘or combination techniques from multip
satellite sensors, secondary data sources, and a large and systematic col-
lection of in-situ information, including temporal phenologies and hyper-
“Remotely sensed data provide the only source of
information to make a complex global agricultural monitoring

system feasible by being consistent, repeatable, routine,
rapid, and scalable.”

spectral signatures. As Beddington (2010) stresses, the fundamental issues
for policy makers and scientists are whether by the year 2050 over nine
billion people can be fed equitably, healthily, and sustainably and how
sound management can make water use more sustainable as a growing
population moves up from poverty. In this context, the role of remote sens-
ing is clear. There is an unequivocal need to provide a more systematic
and integrated approach to global cropland mapping to support a range of
initiatives, including assessments of crop productivity, helping to identify
food security "hotspots" of vulnerability and resiliency, assessing the ag-
ricultural risks due to climate change and quantifying agricultural water
demand,
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